MODEL 3001

520 MHz Signal Generator

- Broad Frequency Range
- Phase Locked Over Entire Range
- Programmable Frequency and RF Level
- GPIB Compatible
- Simplified Operation

Versatility

Model 3001, with a frequency range of 1 to 520 MHz, is a rugged, solid state instrument, offering the utmost in measurement convenience when testing receiver sensitivity, antenna gain, channel selectivity, signal-tonoise ratio, gain bandwidth, and transmission line characteristics of various passive and active components.

High Accuracy and Stability

Model 3001 signal accuracy is 0.001% (typically 0.0002%) over the entire frequency range. Standard

stability is 0.2 ppm/hour. Option 05, External Reference, allows accuracy over the entire frequency range to equal the accuracy of an external standard. Option 06, High Stability Reference, used in conjunction with Option 05 provides typical overall accuracy of 0.2 ppm (0.00002%) and aging of 0.005 ppm/day.

Human Engineering

Frequency is set via six front panel level/indicator switches to a resolution of 1 kHz. This method of selecting frequency is faster than other methods (range switches, tuning

controls, frequency counters, etc.) and is practically error-free. As a further user convenience, one control sets the modulation and provides a readout for percent AM or FM deviation.

Programmability

Frequency is programmable through a rear panel input connector using BCD-coded TTL voltages or BCD-coded contact closures. Option 01C permits RF level programming, making Model 3001 an ideal instrument for automatic and semiautomatic test applications.

MODEL 3001

FREQUENCY

Range

Model 3001: 1 to 520 MHz selectable in 1 kHz steps.

Readout

6 digit lever/indicator switches:

Resolution

1 kHz.

Accuracy

 \pm 0.001% in all modes. (Typical: \pm 0.0002% after 2 hours.)

 \pm 0.001% \pm 10 kHz when frequency vernier is not in CAL position.

Stability

0.2 ppm/hr.

500 Hz/10 min when frequency vernier is not in CAL position.

Programmability

Frequency programmable through rear-panel input connector using BCD-coded TTL voltages or BCD-coded contact closures.

RF OUTPUT

Power Level Range

 $+ 13 \text{ to } - 137 \text{ dBm} (1 \text{V to } 0.03 \,\mu\text{V rms}).$

Level Control

Continuously adjustable in 10 dB steps with an 11 dB vernier. Output level is indicated on a front panel meter calibrated in volts and dBm.

Total Level Accuracy

 $+13 \text{ to } -7 \text{ dBm: } \pm 1.25 \text{ dB.}$

(Typical: ± 0.75 dB.)

-7 to -77 dBm: ± 1.95 dB.

(Typical: ± 1.25 dB.)

-77 to -137 dBm: ± 2.75 dB.

(Typical: ± 1.5 dB.)

Accuracy Breakdown

Flatness (\pm 13 to - 7 dBm): \pm 0.75 dB

(Typical: ± 0.5 dB.)

Output Meter: ± 0.5 dB.

Step Attenuator:

 \pm 0.5 to 70 dB (\pm 0.2 dB calibration

error).

 \pm 1.0 to 130 dB (\pm 0.5 dB calibration error).

Impedance

 50Ω (SWR <1.2 at RF output levels below 0.1V).

Leakage

 $<1 \,\mu\text{V}$ into a 2 turn, 1 in. diameter loop held 1 in. from any surface.

Output Connector

Type N.

SPECTRAL PURITY

Harmonic Output

1 to 10 MHz: < - 26 dBc. 10 to 520 MHz: < - 30 dBc.

Subharmonics

Nondetectable.

SIGNAL GENERATORS

Weigh

Spurious Level

3 MHz band

<-60 dBc in 1 to

< - 65 dBc in 3 to

< -55 dBc in 3 to

< -35 dBc in 3 to

50 Hz to 15 kHz post-detection band-

300 Hz to 3 kHz post-detection band-

50 Hz to 15 kHz post-detection band-

width: <100 Hz (Typical: <50 Hz).

width: <200 Hz (Typical: <100 Hz).

Internal: 400 Hz and 1 kHz $\pm 5\%$.

External: DC to 20 kHz (\pm 3 dB band-

width). A 10V p-p signal into 600Ω is required to provide calibrated %

0 to 70 % AM: <3 % . (Typical, 0 to 30 %

 $\pm (5\% + 5\% \text{ of reading})$ at a frequency

1000 MHz band

250 MHz band

350 MHz band

13 kg (28.6 lb) net; 13.6 kg (30 lb) shipping.

Power

115 or 230V \pm 10%; 50 to 400 Hz; approximately 40 watts.

OPTIONS

NOTE: Option combinations are restricted as shown on model/option availability chart (page 200). Options are described on this page also.

01C \$500 RF Level Programming (0.1 dB steps) 03 \$230 Reverse Power Protection 04 \$210

Auxiliary RF Output

05 \$250 External Reference (Required with Option 06)

05A \$340 External Reference/High Stability Reference (1 ppm accuracy)

High Stability Reference (Requires Option 05)

07 Low Level Leakage

ACCESSORIES

NOTE: See page 228 for rack mounting details.

K108
Rack Mount Adapter

(P/N 1019-00-0031) **102 \$995** Precision Frequency Standard

FACTORY/FOB

Beech Grove, IN

PRICE

Model 3001

\$4850

\$470

\$55

FREQUENCY MODULATION

Nonharmonics Fundamental

1 to 3 MHz

3 to 250 MHz

3 to 350 MHz

3 to 520 MHz

width: < -65 dBc.

AMPLITUDE MODULATION

modulation control.

Measured at 1 kHz.

0 to 90% AM: <5%

Calibrated from 0 to 90%.

Residual AM

Residual FM

Frequency

Range

Distortion

0 to 90%.

AM: <1.5%.)

Modulation Control

Frequency

Accuracy

of 1 kHz.

Internal (±5%): 400 Hz and 1 kHz. External: DC to 25 kHz when frequency vernier is not in CAL position. A 10V p-p signal into 600Ω is required to provide calibrated deviation control.

Peak Deviation Standard Ranges

0 to 10 kHz and 0 to 100 kHz. Other frequency deviation ranges available on special order.

Deviation Control Calibrations

0 to 10 kHz, \times 1 and \times 10.

Accuracy

 \pm 500 Hz on \times 1 range. \pm 5 kHz on \times 10 range.

Distortion

Measured at 1 kHz.

10 kHz to max deviation: <2%. 3 to 10 kHz deviation: <4%.

GENERAL

Dimensions

30.3 cm (12 in.) wide; 13.4 cm (5 ¼ in.) high; 34.9 cm (13 ¾ in.) deep.